金属的腐蚀与原电池有什么关系?

2024-05-12

1. 金属的腐蚀与原电池有什么关系?

金属的腐蚀快慢与金属的活泼性有关。金属一般与氧气发生氧化还原反应。
电化学腐蚀与原电池是同一个原理。牺牲阳极,保护阴极。
电化学腐蚀是两种活泼性不同的金属在电解质中或相连,在空气中发生氧化还原反应。活泼金属先反应。比纯金属氧化反应要快很多。

金属的腐蚀与原电池有什么关系?

2. 电解池属于金属腐蚀吗

不属于。因为电解池是将电能转化为化学能的一种装置。在这种装置内
 阴极:一定不参与反应, 不一定是惰性电极;
  阳极:不一定参与反应, 也不一定是惰性电极。
请认真体会以上两点。
在电镀工艺中,金属阳极会失电子而溶解,可以说是被腐蚀了。
就是说电解池中有可能存在腐蚀现象。
但存在和属于是两个概念。

3. 电解池,金属的化学腐蚀与防护怎么理解

电解池就是将电能转化为化学能的装置
金属的腐蚀可分为化学腐蚀和电化学腐蚀,化学腐蚀的定义是金属与接触到的干燥气体(如O2 Cl2, SO2等)或非电解质液体(如石油等)直接发生氧化还原反应而引起的腐蚀,本质就是金属被氧化,无电流产生。

电解池,金属的化学腐蚀与防护怎么理解

4. 电化学腐蚀和原电池的区别?

原电池
将化学能转变成电能的装置。组成原电池的基本条件是:将两种活泼性不同的金属(或石墨)用导线连接后插入电解质溶液中。

电化学腐蚀是指不纯的金属或合金与电解质溶液接触发生原电池反应而引起的腐蚀。

者的区别在于电化学腐蚀能够构成原电池。即存在电极反应。而化学腐蚀只是一个氧化还原反应,缺少必需的两个固体电极材料构不成原电池。

5. 原电池的腐蚀类型

 定义金属在酸性较强的溶液里放出氢气的电化学的腐蚀叫做析氢腐蚀。成因在钢铁制品中一般都含有石墨(C)或碳化铁(Fe3C)。在潮湿空气中,钢铁表面会吸附水汽而形成一层薄薄的水膜。水膜中溶有二氧化碳或二氧化硫后就变成一种电解质溶液,使水里的H+增多:CO2+H2O←→H2CO3←→H++HCO3-SO2+H2O←→H2SO3←→H++HSO3-于是就产生了无数个以铁为负极、碳或碳化铁为正极、酸性水膜为电解质溶液的微小原电池。电极反应负极(铁):铁被氧化Fe-2e-=Fe2+正极(碳或碳化铁):溶液中的H+被还原2H++2e-=H2↑结果最后氢气在碳的表面放出,铁被腐蚀,所以叫析氢腐蚀。 定义金属在酸性很弱或中性溶液里,空气里的氧气溶解于金属表面水膜中而发生的电化学腐蚀,叫吸氧腐蚀。电极反应负极(铁):2Fe-4e-=2Fe2+正极(碳或碳化铁):2H2O+O2+4e-=4OH-吸氧腐蚀的必要条件发生吸氧腐蚀的必要条件是金属的电位比氧还原反应的电位低。氧的阴极还原过程及其过电位吸氧腐蚀的阴极去极化剂是溶液中溶解的氧。随着腐蚀的进行,氧不断消耗,只有来自空气中的氧进行补充。因此,氧从空气中进入溶液并迁移到阴极表面发生还原反应,这一过程包括一系列步骤。1.氧穿过空气/溶液界面进入溶液;2.在溶液对流作用下,氧迁移到阴极表面附近;3. 在扩散层范围内,氧在浓度梯度作用下扩散到阴极表面;4.在阴极表面氧分子发生还原反应,也叫氧的离子化反应。吸氧腐蚀的控制过程及特点金属发生氧去极化腐蚀时,多数情况下阳极过程发生金属活性溶解,腐蚀过程处于阴极控制之下。氧去极化腐蚀速度主要取决于溶解氧向电极表面的传递速度和氧在电极表面上的放电速度。因此,可粗略地将氧去极化腐蚀分为三种情况。1.如果腐蚀金属在溶液中的电位较高,腐蚀过程中氧的传递速度又很大,则金属腐蚀速度主要由氧在电极上的放电速度决定。2.如果腐蚀金属在溶液中的电位非常低,不论氧的传输速度大小,阴极过程将由氧去极化和氢离子去极化两个反应共同组成。3.如果腐蚀金属在溶液中的电位较低,处于活性溶解状态,而氧的传输速度又有限,则金属腐蚀速度由氧的极限扩散电流密度决定。扩散控制的腐蚀过程中,由于腐蚀速度只决定于氧的扩散速度,因而在一定范围内,腐蚀电流将不受阳极极化曲线的斜率和起始电位的影响。扩散控制的腐蚀过程中,金属中不同的阴极性杂质或微阴极数量的增加,对腐蚀速度的增加只起很小的作用。 负极:活泼金属失电子,看阳离子能否在电解液中大量存在。如果金属阳离子不能与电解液中的离子共存,则进行进一步的反应。例:甲烷燃料电池中,电解液为KOH,负极甲烷失8个电子生成CO2和H2O,但CO2不能与OH-共存,要进一步反应生成碳酸根。正极:①当负极材料能与电解液直接反应时,溶液中的阳离子得电子。例:锌铜原电池中,电解液为HCl,正极H+得电子生成H2。②当负极材料不能与电解液反应时,溶解在电解液中的O2得电子。如果电解液呈酸性,O2+4e-+4H+==2H2O;如果电解液呈中性或碱性,O2+4e-+2H2O==4OH-。特殊情况:Mg-Al-NaOH,极。负极:Al-3e-+4OH-==AlO2-+2H2O;正极:2H2O+2e-==H2↑+2OH-Cu-Al-HNO3,Cu作负极。注意:Fe作负极时,氧化产物是Fe2+而不可能是Fe3+;肼(N2H4)和NH3的电池反应产物是H2O和N2无论是总反应,还是电极反应,都必须满足电子守恒、电荷守恒、质量守恒。pH变化规律电极周围:消耗OH-(H+),则电极周围溶液的pH减小(增大);反应生成OH-(H+),则电极周围溶液的pH增大(减小)。切记,电极周围只要消耗OH-,PH就减小,不会受“原电池中OH-(阴离子)向负极移动”的影响。溶液:若总反应的结果是消耗OH-(H+),则溶液的pH减小(增大);若总反应的结果是生成OH-(H+),则溶液的pH增大(减小);若总反应消耗和生成OH-(H+)的物质的量相等,则溶液的pH由溶液的酸碱性决定,溶液呈碱性则pH增大,溶液呈酸性则pH减小,溶液呈中性则pH不变。 1.Cu─H2SO4─Zn原电池正极:2H+ +2e- →H2↑负极:Zn-2e- →Zn2+总反应式:Zn+2H+==Zn2++H2↑2.Cu─FeCl3─C原电池正极:2Fe3+ + 2e- →2Fe2+负极:Cu-2e- →Cu2+总反应式:2Fe3+ +Cu=2Fe2+ +Cu2+3.钢铁在潮湿的空气中发生吸氧腐蚀正极:O2+2H2O+4e- →4OH-负极:2Fe-4e-→2Fe2+总反应式:2Fe+O2+2H2O=2Fe(OH)24.氢氧燃料电池(碱性介质)正极:O2+2H2O+4e- →4OH-负极:2H2-4e- +4OH- →4H2O总反应式:2H2+O2==2H2O5.氢氧燃料电池(酸性介质)正极:O2+4H+ + 4e-→2H2O负极:2H2-4e- →4H+总反应式:2H2+O2=2H2O6.氢氧燃料电池(中性介质)正极:O2+2H2O+4e- → 4OH-负极:2H2-4e- →4H+总反应式:2H2+O2=2H2O7.铅蓄电池(放电)正极 (PbO2) :PbO2+2e- +SO42- +4H+ →PbSO4+2H2O负极 (Pb) :Pb-2e- +SO42- →PbSO4总反应式:Pb+PbO2+4H++2SO42-=2PbSO4+2H2O8.Al─NaOH─Mg原电池正极:6H2O+6e- →3H2↑+6OH-负极:2Al-6e- +8OH- →2AlO2-+4H2O总反应式:2Al+2OH- +2H2O=2AlO2- + 3H2↑9.CH4燃料电池(碱性介质)正极:2O2+4H2O+8e- →8OH-负极:CH4-8e- +10OH- →CO32-+7H2O总反应式:CH4+2O2+2OH-=CO32-+3H2O10.熔融碳酸盐燃料电池(Li2CO3和Na2CO3熔融盐作电解液,CO作燃料):正极:O2+2CO2+4e- →2CO32-(持续补充CO2气体)负极:2CO+2CO32--4e- →4CO2总反应式:2CO+O2=2CO211.银锌纽扣电池(碱性介质)正极 (Ag2O) :Ag2O+H2O+2e- →2Ag+2OH-负极 (Zn) :Zn+2OH--2e- →ZnO+H2O总反应式:Zn+Ag2O=ZnO+2Ag12. 碱性锌锰电池(KOH介质)正极(MnO2):2MnO2+2H2O+2e- →2MnOOH+2OH-负极(Zn):Zn+2OH--2e- →Zn(OH)2总反应式:Zn+2MnO2+2H2O→2MnOOH+Zn(OH)2蓄电池 蓄电池在放电过程中属于原电池反应。这类电极反应都有电解质溶液参与,如果能分析清楚电解质溶液是否参与电极反应,那么负极的电极反应式和正极的电极反应式的书写就可迎刃而解了。现以铅酸蓄电池为例来分析电极反应式的书写方法。铅酸蓄电池的总反应为:Pb+ PbO2+H2SO4=2PbSO4+2H2O根据原电池的工作原理分析,负极失去电子发生氧化反应,可知:Pb–2e-=Pb2+ ①,生成的Pb2+进入电解质溶液中,Pb2+ 与溶液中的SO42-不能共存,要继续反应生成PbSO4,即:Pb2++SO42-=PbSO4 ②,因此在原电池的负极反应式为①+②即:Pb–2e-+SO42-=PbSO4 ;正极是得电子发生还原反应的一极,则有:PbO2+2e-=Pb2++2O2- ①,Pb2+和O2-进入溶液中,由于电解质溶液是H2SO4溶液,O2-在酸性环境中,不能单独存在,可供O2-结合的微粒有H+和H2O,O2-在酸性环境中优先结合H+生成H2O,这样在正极发生的反应有:4H++2O2-=2H2O②;Pb2++SO42-=PbSO4③根据以上分析可知正极反应式为①+②+③即:PbO2+2e-+SO42-+4H+=PbSO4+2H2O。(注意:在电极反应式中应遵循电荷守恒和质量守恒;在负极反应式与正极反应式相加求总反应时要注意得失电子数要相等。)再如:Ag—Zn高能电池(钮扣电池)由Ag2O、Zn及KOH溶液组成。总反应为:Zn+Ag2O+H2O=Zn(OH)2+2Ag根据原电池原理可知:Zn做负,Ag2O做正极,电解质溶液为KOH溶液。负极极失去电子发生氧化反应,则负极反应为:Zn–2e-=Zn2+,Zn2+进入溶液后又与溶液中的OH-反应Zn2++2OH-=Zn(OH)2。所以负极反应为:Zn–2e-+2OH-=Zn(OH)2;正极为Ag2O得到电子发生还原反应,即Ag2O+2e-=2Ag+O2-;O2-在中性或碱性环境中也不能单独存在,只能结合H2O生成OH-,故在中性或碱性条件下O2-+H2O=2OH-,所以正极反应式为:Ag2O+2e-+H2O=2Ag+2OH-。

原电池的腐蚀类型

6. 什么是腐蚀电池

腐蚀电池的类型很多,也很复杂。通常是根据组成腐蚀电池的电极大小,将其分为宏观腐蚀电池和微观腐蚀电池两大类。
腐蚀电池 通常是指肉眼可见的、较大的电极构成的“大电池”。常见的有以下三种。
1.异金属接触电流 当两种不同电极电位的金属互相接触,并处于同一种电解质溶液中时,就会构成一个大的腐蚀电池。电位较低的多属成为
阳极被腐蚀,而电位较高的金属成为阴极得到保护。在实际生产中,一些设备采用不同金属的组合件,可能会发生这种接触腐蚀。通常把这
种由异金属接触构成的腐蚀电池称为腐蚀电偶,由此引起的腐蚀称为电偶腐蚀。在这类腐蚀中,两种金属的电极电位相差愈大,腐蚀愈严重
。如果阳极的面积远小于阴极面积,则腐蚀会加速进行;反之,则腐蚀速度减小,危险性也较小。
2.浓差电池 同一金属的不同部位,由于接触介质的浓度不同,也会形成一个大的腐蚀电池,称为浓差电池。常见的有氧浓差电池和盐浓差电池。一般是浓度较低的部位电位较低,是电池的阳极,容易受到腐蚀。浓度较高的部位电位较高,是电池的阴极,不会腐蚀,如前面介绍过的缝隙腐蚀。
3.温差电池 同一金属在同一种电解质溶液中,由于各部位的温度不同,也会构成一个大的腐蚀电池,称为温差电池。

7. 腐蚀电池的特点

(1)金属的腐蚀集中出现在阳极区, 阴极区只起传递电子的作用(2)上述三个过程相互独立,又彼此联系(3)腐蚀电池中的反应是以最大限度的不可逆方式进行

腐蚀电池的特点

8. 电解池和原电池都属于电化学腐蚀吗